
©
D

IG
IT

A
LV

IS
IO

N

IEEE SIGNAL PROCESSING MAGAZINE [80] MARCH 2007 1053-5888/07/$25.00©2007IEEE

M
usic synthesizers can be divided into two
broad categories: functional synthesizers that
generate sound from a mathematical formula
or its electrical equivalent, and sampling syn-
thesizers that generate sound by playing back

recordings of musical sounds. The Theremin and the Ondes-
Martenot were early examples of functional synthesizers dating
from the 1920s. Electronic organs like the Hammond followed
in the 1930s. Specialized electronic music studios were built in
the 1950s and 1960s, followed by more compact analog synthe-
sizers—the Moog, Buchla, Arp, Oberheim in the 1970s. In the
late 1970s, digital functional synthesizers using FM technology
became standard equipment for the working musician [1].
These functional synthesizers can be played expressively in live
performance with physical controllers mapped directly to the
parameters of the underlying mathematical formulas. However,

the underlying sound generation formulae for these synthesiz-
ers are too simple to capture the complexity and richness of nat-
ural sounds.

In the late 1980s and 1990s physical modeling synthesizers
were introduced that simulate the physics of natural instru-
ments [2]. These functional synthesizers are capable of captur-
ing the complex dynamics of natural instruments. However,
physical modeling synthesizers can require a virtuoso mastery
comparable to the original natural instrument. In order to use
these models convincingly from a keyboard or directly from a
composer’s score requires a “physical model” of the performer
as well as the instrument. The performer model has, as yet, not
been incorporated in these systems.

The origins of sampling synthesis can be traced to the devel-
opment of Musique Concrete in 1948 that used manual splicing
of magnetic tape to create musical compositions [3]. A playable

[Eric Lindemann]

Music Synthesis
with Reconstructive

Phrase Modeling
[Capturing the dynamic behavior and expressivity of musical instruments]

IEEE SIGNAL PROCESSING MAGAZINE [81] MARCH 2007

keyboard instrument using magnetic tape—the Melotron—was
developed in the 1960s. However, it wasn’t until the 1980s that
the ability to store sounds directly in computer RAM brought
sampling into the mainstream. Today, samplers are the domi-
nant synthesizer technology and an entire sample library indus-
try has emerged. Samplers are often used to simulate orchestral
instruments and competing orchestral sample libraries boast
recordings of Stradivarius violins, famous orchestras perform-
ing in famous concert halls, and the highest bit rate digital
recording techniques. With increasing compute power and stor-
age capacity sample libraries have grown enormously in size
from hundreds of kilobytes in the early 1980s to hundreds of
gigabytes today.

The dominant sampler performance interface is the musical
keyboard. The performer presses a key on the keyboard and a
digital recording associated with that key is played back. There
is no connection between the playback of one recording and the
next and there is generally little the performer can do to the
sound after a key is pressed. This approach can work well with
percussion instruments but is not well suited to simulating
expressive instruments such as violin or trumpet. The individual
recordings can be stunningly realistic with all the complexity of
natural sounds, but because of the lack of real-time performer
interaction and the inability to model natural sounding transi-
tions between notes, the results for expressive instruments often
sound like a concatenation of separate sounds rather than a con-
tinuous musical phrase.

This article describes a new synthesis technology called
reconstructive phrase modeling (RPM). A goal of RPM is to com-
bine the realistic sound quality of sampling with the perform-
ance interaction of functional synthesis. Great importance is
placed on capturing the dynamics of note transitions-slurs, lega-
to, bow changes, etc. Expressive results are achieved with con-
ventional keyboard controllers. Mastery of special performance
techniques is not needed. RPM is used in a commercial software
synthesizer called Synful Orchestra [4] that is used by com-
posers and performers as a “virtual orchestra in a box.” Synful
Orchestra is the first of a planned series of products that will
include jazz instruments, rock/funk instruments, ethnic instru-
ments, and exploration of new sounds.

RPM is an analysis-synthesis system that is related to two
important trends in computer music research. The first is a
form of additive synthesis in which sounds are represented as a
sum of time-varying harmonics plus noise elements. RPM cre-
ates expressive performances by searching a database of
idiomatic instrumental phrases and combining modified frag-
ments of these phrases to form a new expressive performance.
This approach is related to another research trend called con-
catenative synthesis.

ADDITIVE SYNTHESIS
The understanding that musical or pitched sounds can be repre-
sented as a series of pure-tone harmonics with integer multiple
frequencies has its origins with Pythagoras and the Greeks.
More recently we know that the mammalian ear and brain

actively process sound in frequency bands [5], [6]. Modeling
sound as a harmonic series maps well to both the physics of
vibrating bodies like musical instruments and to the frequency-
band processing of the human ear and brain. This helps to
explain why a functional synthesizer like the Hammond organ
whose control parameters are organized in frequency bands pro-
vides an intuitive interface for the performer.

In 1807 Jean-Baptiste Fourier discovered that any periodic
function can be represented perfectly as a weighted sum of har-
monically related sines and cosines [7]. (LaGrange, who served
on Fourier’s thesis committee, admired everything about
Fourier’s work except for the part about sines and cosines.) So,
sinusoidal additive synthesis parameters are not only intuitive
synthesizer controls but they also represent a hi-fidelity coding
strategy for musical sound. It is natural to use this dual aspect
of additive synthesis to bridge the gap between functional syn-
thesizers, concerned with providing intuitive control parame-
ters, and sampling synthesizers, concerned with recording and
storing sound fragments.

If we assume a human audible bandwidth from 20 Hz to
20 kHz, then a low-pitched musical tone, say A at 110 Hz , will
have a maximum of 20,000/110 = 181 harmonics. Generally,
low-pitched, naturally occurring tones will have a high-frequency
roll-off, reducing the number of audible harmonics.
Nevertheless, a general assumption of approximately 100 har-
monics per tone is reasonable. Digital computers make it possi-
ble to generate these harmonics and to control their
time-varying frequencies and amplitudes accurately. However, it
is still computationally demanding. Several efforts to use inverse
fast Fourier transform (IFFT) techniques to ease this computa-
tional burden have been described [8]–[13]. Other time-domain
approaches to easing the computation burden have been “group
additive synthesis” [14] and “multiple wavetable synthesis” [15].

The ability to digitally generate 100 harmonics per tone is a
good thing. However, a composer presented with a computer
tool allowing her to draw the time-varying amplitudes of 100
harmonics for each note of her composition would find it very
difficult and extremely time consuming to design amplitude
envelopes that resulted in a rich natural sound.

One approach to identifying the harmonic amplitude
envelopes that lead to natural sound is to extract these
envelopes from recordings of natural instruments. Analysis-syn-
thesis systems are systems that transform a recorded sound to a
set of time-varying parameters such as harmonic amplitudes
and frequencies. Analysis-synthesis systems have a long history
in telecommunications. For music, the first examples of analy-
sis-synthesis based on additive parameters are from Risset and
Mathews at Bell Labs in 1969 [16].

The fast Fourier transform (FFT) is an efficient recursive
method for computing Fourier series coefficients. Applying the
FFT to a recording of a single pitch period of a musical tone, say
401 samples of an A 110 tone sampled at 44,100 kHz, gives the
complex amplitudes (or equivalently real amplitudes and phases)
of the harmonics of the fundamental. However, this “pitch syn-
chronous” approach requires accurate identification of pitch

and alignment of FFT buffers. A more common approach first
pioneered for synthesis by Jont Allen at Bell Labs [17] applies
the FFT to overlapping “windowed” buffers of fixed length. This
approach, referred to as the short-time Fourier transform
(STFT), is equivalent to a filter bank with fixed linearly spaced
overlapping frequency bands, where each band is sampled at a
reduced “decimated” sample rate [18]. In this case a single pure
tone sinusoid will appear in multiple bands due to the frequency
band overlap. A sinusoid with time-varying frequency will move
around between various fixed STFT filter-bank bands.
Identifying a sinusoid in the STFT filter bank is further compli-
cated by aliasing components that are generated due to decima-
tion of the frequency bands. The problem of extracting
harmonics or nonstationary sinusoids from the STFT has been
addressed by [19]–[22].

Many musical sounds have noise components as well as
pitched components. Examples include sustained bow noise, bow
scratch during attacks, flute chiff at note attack, and sustained
breath noise of a flute. While performing normal FFT-IFFT
analysis-synthesis will preserve these noise elements, the extrac-
tion and resynthesis of harmonic amplitudes from the STFT fil-
ter bank will not. Several systems have addressed the problem of
separation and resynthesis of noise elements using STFT tech-
niques [23], [24].

RPM technology performs signal processing operations on
each time-varying harmonic envelope as if it was a signal in its
own right. For example, rapidly varying components of each
envelope are separated from slowly varying components. A
related technique based on wavelet analysis of harmonic
envelopes is described in [25].

CONCATENATIVE SYNTHESIS
RPM relies on a database of recorded musical phrases.
Fragments from these phrases are taken from the database and
spliced together or concatenated to form the musical output.
The phrase-oriented approach contrasts with the traditional
sample library approach of recording a collection of individual
notes and mapping these to keys on the keyboard. The emphasis
is on the connection between notes and capturing the many
ways performers move from one note to the next. Notes do not
stand alone. The timbre and contour of a note is directly affected
by its phrase context. In speech synthesis this is referred to as
“co-articulation.” The pronunciation of a syllable depends on the
syllables that precede and follow it. In this sense, RPM captures
the co-articulation of musical sounds.

Concatenative speech synthesis (CSS) [26] is intended to
capture co-articulation effects for human speech. With CSS a
database of recorded speech fragments is maintained. These can
be single speech phonemes, combinations of multiple sounds
such as diphones or triphones, whole words, or even short
phrases. Originally the emphasis was on highly structured data-
bases with uniform collections of similar length sounds, but
heterogeneous nonuniform databases with a variety of lengths
and structures and corresponding unit selection and search
strategies have also been the subject of research [27], [28].

Recordings in the database are concatenated to form complete
phrases. There have also been a number of attempts to exploit
concatenative synthesis for musical sounds [29]–[34]. Of partic-
ular note is the work on spectral modeling synthesis [35] incor-
porated in the Yamaha Vocaloid singing synthesis product.

RPM exploits a kind of MIDI control sequence-based database
search and additive concatenative synthesis for rapidly varying
components of the audio output signal. This concatenative stream
is then combined with the slowly varying components, which are
functionally generated directly from the MIDI control stream.

OVERVIEW OF RPM
Figure 1 shows an overview of the RPM synthesizer. The input
MIDI control stream may be generated automatically from a
composer’s score or may originate from a controller in real-time
(keyboard, wind instrument, etc.). The stream includes note-
on/note-off messages with associated pitch and velocity (an indi-
cation of intensity of the note) as well as continuous controller
information that determines vibrato intensity, overall instru-
ment loudness, timbre, and pitch-bend.

Slowly varying pitch and loudness controls are derived
directly from the input MIDI control stream. MIDI
volume/expression and velocity contribute to the loudness con-
trol, and pitch is derived from the MIDI note-on pitch and pitch-
wheel control. In natural musical instruments the timbre of an
instrument is highly correlated with pitch and loudness; e.g.,
when the performer blows harder the trumpet gets louder and
its timbre gets brighter. RPM uses this correlation to predict a
basic underlying timbre of the instrument based on the slowly
varying pitch and loudness derived from the MIDI stream. This
timbre is represented as slowly varying amplitudes of the indi-
vidual harmonics of the instrument sound.

The slowly varying pitch and loudness and basic underlying
timbre do not have the small rapid fluctuations and fine detail of
the original instrument recordings. These rapid fluctuations in
loudness, pitch, and timbre are what give the instrument its
richness and realism. This is especially true during the transi-
tions from one note to the next where the fluctuations are par-
ticularly rapid and idiosyncratic for each instrument.

To generate these rapid fluctuations RPM relies on a database
of recorded musical phrases. These are not recordings of isolat-
ed notes as is typically the case with sample libraries but com-
plete idiomatic musical passages that represent all kinds of
articulation and phrasings: detached, slurred, portamento, sharp
attacks, soft attacks, etc. The phrases are recorded in solo
recording sessions one instrument at a time. For homogeneity,
only one musician is used per instrument: one violinist, one
horn player, etc.

For Synful Orchestra, a recording session has something of
the character of an orchestral audition. The musician is asked to
play a variety of idiomatic passages from the orchestral literature.
Taken together, these passages are intended to represent all the
various ways the instrument is played. For orchestral playing
there is a strong prior expectation for the sound and style of play-
ing of each instrument. In future RPM-based products we will

IEEE SIGNAL PROCESSING MAGAZINE [82] MARCH 2007

IEEE SIGNAL PROCESSING MAGAZINE [83] MARCH 2007

[FIG1] Overview of the RPM synthesizer.

 RPM SYNTH ENGINE

SYNFUL RPM Reconstructive Phrase Modeling

 Mix Noise
Elements

 Additive Harmonic
Synthesis

Predict
Slowly Varying

Loudness, Pitch,
and Harmonics

MIDI

Search and Select
Phrase Fragments Stretch, Shift,

and Slide

BowVibrato SustainSlur

10

−10

−20

−30

−40

−50

0

10

−10

−20

−30

−40

−50

0

0 50 100 150 200 250 300 350 400 450 500

0

1

0.5

0

−0.5

−1

−1.5

50

0 200 400 600 800 1000 1200 1400 1600 1800
−2000
−1000

−500

0 200 400 600 800 1000 1200 1400 1600 1800

100 150 200 250 300 350

1500

1000

500

5 10 20 30 40 50 60 70

400 450 500

Stretch, Shift,
and Slide

Stretch, Shift,
and Slide

Vibrato SustainVibrato Sustain

Attack Noise

Bow Noise

Sustain Noise

RPM Phrase Database

Tongue Slur

 Splice Residual
Rapidly Varying
Loudness, Pitch,
and Harmonics

 Audio Ouput

emphasize jazz and popular instruments where the individual
style of the performer can be more important. The basic sound
and some of the aspects of phrasing of the individual performer
are obviously part of the sound of the synthesizer. However, much
of what we consider to be personal style is based on higher level
phrasing control—the length of notes, the intensity of attack
used in a particular musical context, and flexibility or rigidity in
rhythmic interpretation. All of these higher level aspects of
phrasing are under the control of the user of the RPM synthesiz-
er, not the musician who performed the original phrases.

There is no attempt to systematize the contents of the RPM
database; that is, to include performances of the same note or
phrase fragment transposed to all pitches, or to include slurs
from all pitches at all intervals in an organized pattern. We

believe that the space of expressive articulations is much too
large to be approached in this systematic manner and that any
attempt to reduce the space to an organized performance matrix
results in a significant reduction in expressive power. This
reductionism is one of the fundamental problems with current
sampling technology. Our approach is to capture a wide range of
expressive playing using a “grab bag” approach and then to pro-
vide technological solutions that search the heterogeneous data-
base and locate phrase fragments that fit the current musical
context. Eliminating perceptual discontinuities while splicing
these disparate phrase fragments is a significant challenge. We
discuss solutions to this below.

The recorded phrases are stored in the database using a “resid-
ual pitch, loudness, and harmonics + noise” (RPLHN) representa-

tion. The RPLHN representation describes only
the rapid fluctuations of the time-varying pitch,
loudness, and harmonic amplitudes of the record-
ed sound. In addition, the RPLHN representation
also separates noise elements such as breath noise
and bow noise from the sound and stores these as
pulse code modulation (PCM) sampled signals in
the database. Figure 1 shows these different com-
ponents in the database.

The phrases in the database are labeled with
descriptor information that identifies the pitches,
length of notes, intensity of notes, and type of
note transitions—slurred, tongued, bowed, etc.
Labeling of phrases is accomplished manually
using a graphical editing tool.

Just as a skilled reader processes written text as
phrases rather than individual words or syllables, a
skilled instrumentalist processes groups of notes
as musical phrases. The musical phrase forms a
single shape or acoustic gesture in the mind of the
performer. This shape is translated, almost uncon-
sciously, into detailed physical actions on the
instrument. Connecting notes to form phrases is
essential to expressive performance.

In RPM the control stream is input to the
“search and select phrases” (SSP) module of the
synthesizer. This module mimics the role of the
performer in forming phrases from the input con-
trol stream and in creating the bridge between
the score/controller level detail of the input MIDI
stream and the much more detailed acoustic
image required for sound production.

The SSP module parses the input MIDI stream
to locate musical phrase boundaries. When a
phrase, consisting of a sequence on the order of
two to eight notes, is identified, the SSP performs
a search to find a “matching” phrase in the data-
base. A match is determined by comparing infor-
mation derived from the input MIDI sequence—
pitch, note-duration, type of note transition,
etc.—to information in the database phrase

IEEE SIGNAL PROCESSING MAGAZINE [84] MARCH 2007

[FIG3] Original, slowly varying, and rapidly varying amplitude.

0 0.5 1 1.5 2 2.5 3
−30

−25

−20

−15

−10

−5

0

5

10

15

R
M

S
 d

B

Original RMS
Slowly Varying RMS
Rapidly Varying RMS

[FIG2] Original, slowly varying and rapidly varying pitch.

0 0.5 1 1.5 2 2.5 3
54

54.5

55

55.5

56

56.5

57

57.5

58

58.5

59

M
ID

I P
itc

h

Original Pitch
Slowly Varying Pitch
Rapidly Varying Pitch

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

IEEE SIGNAL PROCESSING MAGAZINE [85] MARCH 2007

descriptors. Note transition type is determined from the input
control sequence by a weighted combination of note velocity and
the amount of time overlap between notes: a small overlap
between the end of a note and the beginning of the subsequent
note together with a small velocity indicates a legato or slurred
note transition; a larger velocity or a small separation between
notes indicates a detached (bowed or tongued) note transition.

Of course, it is unlikely that an exact match will be found in
the database, so this search uses fuzzy matching criteria. Since
there is not an exact match, the database phrase must be adjusted
to correspond to the desired phrase. The operations include
stretching or compressing the notes in time, shifting notes in
pitch and intensity, sliding notes in time, modifying intensity and
speed of vibrato, and adjusting the timbre of the recorded data-
base phrase. These operations are carried out by the stretch, shift,
and slide (SSS) operators shown in Figure 1. The flexible RPLHN
representation makes these “morphing” operations relatively easy.

The morphed phrase from the database consists only of rapid
fluctuations of pitch, loudness, and timbre. These are then
superimposed on the slowly varying pitch, loudness, and timbre
derived directly from the MIDI stream. This forms a complete
representation of the time-varying loudness, pitch, and relative
harmonic amplitudes of the musical phrase. This is then passed
to the harmonic synthesis (HS) module where it is converted to
a time-domain PCM output. In a parallel processing stream,
noise elements are fetched from the database. These are already
in PCM format. They are mixed with the output of the HS mod-
ule to form the final audio output of the RPM synthesizer.

The term “reconstructive phrase modeling” is inspired from
reconstructive surgery, where bits and pieces are taken from
around the body (the database), molded, and spliced together
(morphed) to rebuild a nose or mouth (the phrase).

RAPIDLY VARYING PITCH AND AMPLITUDE
RPM has an “at the factory” off-line analysis phase and a real-
time synthesis phase. It is during analysis that the phrase
database is constructed from original instrumental
recordings and where statistical analyses are performed to
provide parameters for timbre prediction. The synthesis
phase occurs in real-time under direct control of the per-
former/composer. The analysis process calculates time-
varying pitch, RMS amplitude, and relative harmonic
amplitudes (harmonic amplitudes normalized by RMS
amplitude) and separates noise components in a manner
similar to the additive techniques described above. This is
fully described in [36]–[38].

RPM combines slowly varying loudness, pitch, and
harmonics components derived or predicted from the
MIDI control stream with rapidly varying loudness,
pitch, and harmonics components taken from the phrase
database. The blue trace in Figure 2 shows the original
time-varying pitch for a sequence of three violin notes
that make up part of one of the database phrases. The
red trace shows the rapidly varying pitch, which is
derived during analysis from the original pitch by a

note-oriented trend removal. The rapidly varying pitch is
obtained by subtracting the mean pitch value of the nontransi-
tion part of each note together with a line that fits the transi-
tion part of the original pitch envelope from the original pitch
envelope. The rapidly varying pitch is stored in the database.

During synthesis a slowly varying pitch is generated from
the MIDI stream. The slowly varying pitch is a stair-step func-
tion of constant values reflecting the pitches of MIDI note-on
messages. The steps are connected by curves derived from the
MIDI pitch-wheel control. If the MIDI pitch wheel is not used,
then the pitch curve connecting two notes is approximated by
a line that fits the pitch transition in the original phrase. Often
this pitch transition is an abrupt step from one pitch to anoth-
er. The green trace in Figure 2 shows an example of slowly
varying pitch. Typically, the slowly varying pitch derived from
MIDI will have different note-durations than the rapidly vary-
ing pitch fetched from the database. So, the rapidly varying
pitch is morphed to fit the slowly varying pitch. The compres-
sion or expansion of note durations is discussed below. The
morphed rapidly varying pitch is added to the slowly varying
pitch to form a complete time-varying pitch with complexity
similar to the original phrase.

Figure 3 shows similar blue, green, and red traces for loud-
ness. We use RMS amplitude in dB to represent loudness. True
loudness is a more complicated function of the audio signal.
However, for relatively homogeneous solo instrument record-
ings with restricted dynamic range, RMS amplitude is closely
related to loudness. During synthesis, in a manner similar to
the synthesis of time-varying pitch discussed above, a slowly
varying RMS amplitude, as shown in green, is derived from
MIDI velocity and continuous MIDI expression/volume control.
This synthesized slowly varying RMS amplitude is added to the
rapidly varying RMS amplitude fetched from the database
(shown in red) to form the complete time-varying RMS ampli-
tude used for synthesis.

[FIG4] The first four original harmonics.

0 0.5 1 1.5 2 2.5 3
−35

−30

−25

−20

−15

−10

−5

0

R
M

S
 d

B

Harmonics 1-4

SPECTRAL PREDICTION
Figure 4 shows time-varying amplitudes of the first four harmon-
ics for the phrase of Figure 2.
Figure 5 shows the correspon-
ding rapidly varying harmonic
components that are stored in the
database. During synthesis the
slowly varying pitch and RMS
amplitude derived from the MIDI
stream are used to predict a set of
slowly varying harmonic amplitudes. The ability to predict har-
monic amplitudes based on pitch and amplitude assumes a corre-

lation between pitch and RMS amplitude and relative harmonic
strength. The blue scatter dots in Figure 6 show the relationship

between RMS amplitude and rela-
tive harmonic amplitude for the
first harmonic of the French horn
based on a number of recorded
phrases. The first harmonic
declines in relative strength with
increasing RMS amplitude. Figure
7 shows the relationship between

pitch and relative harmonic amplitude for the first harmonic. The
relative strength of the first harmonic increases with pitch. The

blue scatter dots in Figure 8 and Figure 9 show
the same relationships for the fourth harmonic. As
can be seen, the relative strength of the fourth
harmonic has a more complex dependency on
RMS amplitude but decreases in strength with
respect to pitch. In Figure 7 and Figure 9 pitch is
normalized over the useful range of the instru-
ment, which in this case is the violin.

For each harmonic, a two-layer neural network
with three hidden neurons [39] is used to predict
the RMS amplitude for that harmonic given a
pitch and RMS amplitude value pair. The neural
network serves as an implementation of a nonlin-
ear regression of harmonic amplitude on pitch
and RMS amplitude [40]. The neural network is
trained separately for each harmonic during
analysis. The set of training inputs is the complete
set of time-varying pitch and RMS amplitudes and
the set of training outputs are relative harmonic
amplitudes across all phrases for a particular
instrument. The red dots in Figure 6 through
Figure 9 show the predicted harmonic amplitudes
from the neural network using smoothed versions
of the pitch and RMS amplitude derived directly
from the recorded phrases given as input.

Figure 10 shows the slowly varying compo-
nents of the first four harmonics generated using
the neural nets from the slowly varying pitch and
RMS amplitude of Figures 2 and 3. During analy-
sis. slowly varying harmonic amplitudes generat-
ed using the neural nets are subtracted from the
overall time-varying harmonic amplitudes of
Figure 4 to generate the rapidly varying harmon-
ic amplitudes of Figure 5 that are stored in the
phrase database. We refer to these rapidly varying
harmonic amplitudes as harmonic residuals and
the database signal representation as RPLHN.
Owing to its highly structured sound representa-
tion, RPLHN is considerably more compact than
the traditional PCM sampled representation. The
Synful Orchestra library implemented using
RPM is 32 MB in size and competes with sample
libraries requiring many gigabytes.

IEEE SIGNAL PROCESSING MAGAZINE [86] MARCH 2007

[FIG6] First harmonic amplitude correlation.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−60

−50

−40

−30

−20

−10

0

10

20

H
ar

m
on

ic
 1

 R
M

S
 d

B

Normalized RMS dB

Original
Predicted

[FIG5] Rapidly varying harmonic residuals.

0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

5

10

R
M

S
 d

B

Rapidly Varying Harmonics 1-4

A GOAL OF RPM IS TO COMBINE
THE REALISTIC SOUND QUALITY

OF SAMPLING WITH THE
PERFORMANCE INTERACTION
OF FUNCTIONAL SYNTHESIS.

IEEE SIGNAL PROCESSING MAGAZINE [87] MARCH 2007

RAPID AND SLOW VARIATIONS
There are several advantages to separating slowly varying com-
ponents from rapidly varying components. Since the slowly
varying components are predicted directly from the MIDI con-
trol stream, they are immediately responsive to the performer.
The generation of the slowly varying harmonic components is
purely functional: given a pitch and loudness value pair, a har-
monic series is generated. When the performer presses the vol-
ume or expression pedal, the underlying basic timbre of the
instrument will immediately change in a manner similar to the
change in timbre that occurs when blowing harder or altering
bow speed/pressure. With this responsiveness
the RPM synthesizer behaves with the immedia-
cy of a functional synthesizer while the addition
of rapidly varying components from the database
preserves the realism and complexity of the orig-
inal recordings.

The slowly varying components are responsi-
ble for the large majority of energy in the out-
put audio signal. Since the rapidly varying
components from the database represent a cor-
respondingly smaller part of the signal energy,
the morphing and splicing modifications
applied to these rapidly varying components are
less likely to produce noticeable distortion or
perceived discontinuities.

Traditional sample libraries often have indi-
vidual recorded samples for every pitch. This is
because changing the pitch of these recorded
samples creates noticeable distortions in timbre,
the so called “chipmunk effect.” The rapidly vary-
ing harmonics in the database describe only the
fluctuations of timbre around a basic underlying
timbre generated from slowly varying harmonics.
These rapidly varying components can be used
over a relatively wide range of pitch and intensity
since they do not affect the basic underlying tim-
bre. This makes it possible to eliminate consider-
able redundancy from the database.

The rapidly varying harmonic components
generally include variations related to vibrato.
Vibrato is an oscillation in pitch and amplitude
at about 6 Hz. The database section of Figure 1
shows several sections labeled “vibrato sus-
tain.” These segments show the time-varying
harmonic amplitudes of the first four harmon-
ics of the recorded phrase. Figure 4 shows the
first four harmonics in greater detail. It is clear
that in a natural vibrato all harmonic ampli-
tudes do not oscillate in simple synchrony. The
pattern across harmonics is quite complex with
some harmonics oscillating at the perceived
vibrato rate, other harmonics oscillating at
twice the rate, and still others oscillating some-
what chaotically.

With traditional samplers, there are two ways of dealing
with vibrato. In one method, the sample recording includes
natural vibrato from the original performer and has all of the
complexity of the harmonics shown in Figure 4. However the
vibrato is fixed in the sample recording and cannot be con-
trolled by the performer. In another method the recordings
include no natural vibrato. Instead the vibrato is generated arti-
ficially by applying amplitude and frequency modulation during
synthesis. However, this vibrato sounds artificial because it
forces all harmonics to oscillate in simple synchrony. Both
approaches are deficient.

[FIG7] First harmonic pitch correlation.

−1.5 −1 −0.5 0 0.5 1 1.5
−60

−50

−40

−30

−20

−10

0

10

20

H
ar

m
on

ic
 1

 R
M

S
 d

B

Normalized Pitch

Original
Predicted

[FIG8] Fourth harmonic amplitude correlation.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−50

−40

−30

−20

−10

0

10

H
ar

m
on

ic
 4

 R
M

S
 d

B

Normalized RMS dB

Original
Predicted

With the RPM approach it is possible to provide real-time
performance scaling of the rapidly varying vibrato components.
The complex natural vibrato is
preserved and controllable.
Control over vibrato speed is also
achievable by varying the read-
out rate of the rapidly varying
components.

MULTIRESOLUTION
CONTROLS
A skilled keyboard player trying
to simulate a clarinet using RPM will use the volume/expres-
sion pedal to provide live performance gestures that mimic the
breath control of the clarinetist (making small crescendos dur-
ing certain note attacks, diminuendos at the end of long notes,

etc.). However, the keyboard player will not vibrate her foot on
the expression pedal at 6 Hz to simulate vibrato. This is a level

of detail that is not included in
the keyboard control stream. If
the RPM synthesizer is con-
trolled from an electronic
woodwind controller, however,
the MIDI control stream may
very well contain 6-Hz oscilla-
tions associated with vibrato. At
the other extreme, when receiv-
ing output directly from a com-

poser’s score (e.g., from a notation editor), the MIDI control
stream will not include the kinds of breath-oriented gestures
described above. The control stream will be considerably less
expressive. Depending on the use case, the control stream pro-

vides different levels of expressive detail.
The rapidly varying pitch and RMS ampli-

tude are detrended versions of the time-vary-
ing pitch and RMS amplitude of the original
recorded phrases. This detrending is in fact a
form of high-pass filtering. To include vibrato
in the rapidly varying components, the high-
pass filter has low-frequency cutoff less than 6
Hz. However, as we continue to reduce this
cutoff frequency to 3 Hz, 1 Hz, and 0.5 Hz, we
include more of the original performance ges-
tures in the rapidly varying components. This
allows us to adjust the database as a function
of the level of detail we anticipate receiving
from the MIDI control stream. In fact, the
database can be “multiresolution,” including
information from several high-pass cutoff fre-
quencies, and thus supporting MIDI control
streams with varying degrees of control detail
corresponding to different use cases.

It is interesting to note that this approach
does not require a detailed model of expressive

control behavior. We assume that the recorded phrases in the
database contain the necessary gestures and we adjust the level
of control detail as a function of the detail we anticipate receiv-
ing from the MIDI control stream. This distinguishes RPM
from attempts to enhance expressivity using performance rule
systems that add human-like gestures to the control stream
itself [41]–[44].

The separation of slowly varying and rapidly varying compo-
nents and the prediction of slowly varying components directly
from the control stream is described in detail in [37] and [38].
This prediction provides the responsiveness of a functional syn-
thesizer. At the same time, the database of rapidly varying com-
ponents preserves the richness and complexity of natural sound.
Since the prediction of slowly varying components is based on
intuitive pitch and loudness controls derived from the MIDI
stream, the number of direct mapped control parameters is
small and easily understood by the performer.

IEEE SIGNAL PROCESSING MAGAZINE [88] MARCH 2007

[FIG10] First four predicted harmonics.

0 0.5 1 1.5 2 2.5 3
−35

−30

−25

−20

−15

−10

−5

0

R
M

S
 d

B

Predicted Harmonics 1-4

[FIG9] Fourth harmonic pitch correlation.

−1.5 −1 −0.5 0 0.5 1 1.5
−50

−40

−30

−20

−10

0

10

H
ar

m
on

ic
 4

 R
M

S
 d

B

Normalized Pitch

Original
Predicted

ANALYSIS-SYNTHESIS SYSTEMS
ARE SYSTEMS THAT TRANSFORM
A RECORDED SOUND TO A SET OF

TIME-VARYING PARAMETERS
SUCH AS HARMONIC AMPLITUDES

AND FREQUENCIES.

IEEE SIGNAL PROCESSING MAGAZINE [89] MARCH 2007

PHRASE MATCHING, MORPHING, AND SPLICING
In order to parse the input MIDI stream, find phrase boundaries,
and search the database for approximate matches, RPM needs to
be able to look into the future of the MIDI stream to identify a
note sequence before it is time for the notes to be played. When
playing live from a controller, RPM has no advance knowledge of
when a new note is coming, and so it does its best to react as
expressively as possible with
low latency when a new note
occurs, using only past history
of the input stream as a guide
to phrasing—this is the RPM
“live mode.” However, once a
performance is recorded in a
sequencer, then on playback
the future of the sequence is
known and RPM can look-
ahead to perform more complete phrase matching—this is the
RPM “look-ahead” mode.

To identify the boundary between phrases in the input MIDI
stream, RPM first looks for periods of silence. In the case of a
series of short notes separated by short silence, RPM will group
these together in a single phrase. As a phrase becomes longer,
the ability to find close matches in the database is reduced.
Therefore, the length of phrase searches is limited; e.g., a phrase
search may include the first part of a long note but leave the
next part of the note to the next phrase group. The phrase
boundary defines the input target phrase that is used as a basis
for database searching.

RPM forms a vector of parameters to describe the target
phrase that includes note durations, overlap or separation
between notes to characterize note transitions, pitches,
velocities, and expression or volume pedal activity. The
structure of this parameter vector is similar to the structure
of the descriptors associated with phrases in the database.
RPM first searches the database for phrases or pieces of
phrases with the same number of notes as the target phrase
and then forms the weighted sum of squares of differences
between the target phrase parameters and the candidate
database descriptor phrase parameters. This serves as a dis-
tance metric that is minimized to find the best phrase match
in the database. The weighting is empirical. This kind of
minimization of sum of squares metric is equivalent to a lin-
ear partition and category match in a very high dimensional
vector space—in this case “phrase space” [45].

The note transition characteristics of the selected
phrase (slurs, attacks, etc.) are assumed to match those of
the target phrase since parameters are associated with
these transitions are given heavy weighting in the distance
metric. Since the pitch of the target phrase is set directly
from the input MIDI stream through the generation of
slowly varying pitch there is no pitch adjustment that
needs to be applied to the rapidly varying pitch fetched
from the database, which describes only fluctuations
around the slowly varying pitch. The same considerations

apply to rapidly varying RMS amplitude and relative har-
monic amplitudes fetched from the database.

The note-durations of the selected phrase generally do not
match those of the target phrase. Note lengths are shortened
or lengthened by deleting or repeating (in a quasi-random
manner) segments of the rapidly varying components. In the
case of notes with vibrato, random segment repetition is per-

formed on vibrato period
boundaries. These vibrato peri-
od boundaries are labeled dur-
ing analysis. The operations of
deletion and repetition as well
as the concatenation of one
phrase to the next require
splicing pitch, RMS amplitude,
and harmonic sequences. This
splicing must not introduce

noticeable discontinuities in audio output. This is especially
true since splices often take place in the middle of notes where
discontinuities are particularly noticeable.

If the database consisted of PCM sampled sounds there would
be no way to avoid discontinuities. Even if well-constructed
cross-fade splices were used there would still be noticeable
phase cancellation and changes of timbre across the splice.
Conventional additive synthesis removes the problem of phase
cancellation but still results in abrupt changes of timbre when
phrases from different parts of the database are spliced. With
RPM only rapidly varying components are spliced. The slowly
varying underlying pitch, RMS amplitude, and harmonics are
completely continuous across the splice.

For long notes, on the order of 1 s or more, we select
splice points at about three-quarters of the way through the
note, and we splice to an appropriate length transition (e.g.,
1⁄4 second) leading into the following note. For shorter notes
we choose splice points closer to the middle of a note so that
we capture the full transition between notes where dynamic
behavior is most evident. Whenever possible, splices are
avoided by selecting multinote sequences from the database.
The emphasis is not on the optimal selection of splice points
but on the design of a system that can tolerate splices from
any note to any other note with similar characteristics. The
separation of rapidly varying and slowly varying functionally
generated components is important in making this splicing
process robust.

As discussed above, searching and selecting elements from
the database is based on matching criteria derived from the
input MIDI stream (pitch, intensity, note duration, note over-
lap, etc.). These represent an extremely simple description of
musical sound characteristics. These are the same character-
istics that are used in the descriptors associated with notes
and phrases in the database. It is tempting to include a wider
range of descriptive information in the database descriptors:
perceived acoustic roughness, brightness, more complete
descriptions of slur characteristics such as portamento, etc.
However, these elements are not readily derived from the

THE PHRASE-ORIENTED APPROACH
CONTRASTS WITH THE TRADITIONAL

SAMPLE LIBRARY APPROACH OF
RECORDING A COLLECTION OF

INDIVIDUAL NOTES AND MAPPING
THESE TO KEYS ON THE KEYBOARD.

standard MIDI input. Our aim is to provide good instrumen-
tal interpretations from limited control information. This is
similar to the relationship between conductor/composer and
musician. The composer provides a score with limited
descriptive information and
the performer is expected to
provide an expressive interpre-
tation in keeping with the
established tradition for their
instrument. From a practical
standpoint, we have found
with Synful Orchestra that it
is often difficult to convince
users to include even standard
continuous controls such as
volume or expression in their
MIDI sequences. This experience reinforces our bias toward
simple control interfaces that deliver maximum musical
results. RPM database searching, morphing, and splicing are
discussed in greater in detail in [37] and [38].

EFFICIENT TIME-DOMAIN ADDITIVE SYNTHESIS
Humans have a reduced ability to resolve individual time-
varying harmonic amplitudes at high-frequencies. This is part of
the psycho-acoustic theory of critical bands [5], [6]. RPM
exploits this by using a vector quantized wave-table synthesis at
high frequencies while using a more conventional sinusoidal
oscillator bank at low frequencies.

As described above, transient and sustain noises are separated
from the audio recordings using harmonic analysis. The remain-
ing audio signal consists of a sum of sinusoidal harmonics. We
call this the tonal audio signal. During harmonic analysis, the
time-varying frequencies, amplitudes, and phases of the sinu-
soidal harmonic components of the tonal audio signal are deter-
mined. The 20 lowest frequency time-varying harmonics form
the low-frequency harmonic sequence (LFHS) that encodes the
low-frequency part of the tonal audio signal.

The remaining high-frequency time-varying harmonics
form the high-frequency harmonic sequence (HFHS). We
then proceed to vector quantize (VQ) the HFHS. This means
that we find a small set (e.g., <150) of high-frequency har-
monic vectors that can be used to represent the many thou-
sands of high-frequency harmonic vectors that would
otherwise be in the database. The small number of high-fre-
quency harmonic vectors form a HFHVQ codebook. The idea
is that for any high-frequency harmonic vector in the original
HFHS there is a vector in the HFHVQ codebook that is not
too far away (using a sum of squares distance measure) from
the vector in the HFHS. That vector in the HFHS is then
encoded as an index (HFHVQ_IX) into the HFHVQ codebook.
To form this HFHVQ codebook a generalized Lloyd VQ algo-
rithm is used, as described in [46].

Each vector in the HFHVQ codebook is inverse Fourier
transformed (IFT) to form a single pitch period time-domain
oscillator table with a high-frequency-only spectrum corre-

sponding to the harmonic vector in the HFHVQ codebook. A
random phase response is assigned to the HFHVQ vector
before the IFT. The same random phase response is assigned
to all vectors in the HFHVQ codebook. This means that the

corresponding time-domain
oscillator tables can be cross
faded without causing phase
cancellation. The collection of
inverse transformed time-
domain oscillator tables forms
a high-frequency time-domain
vector quantization (HFTD-
VQ) codebook. It is the HFTD-
VQ codebook that is stored
along with the database.

For high-frequency syn-
thesis above the 20th harmonic, a single table lookup oscil-
lator using the table from the HFTDVQ codebook is used to
generate all high harmonics. The table used generally
changes from synthesis frame to synthesis frame (about
every 10 ms). The table selected is determined by the
HFHVQ_IX stored in the database for that synthesis frame.
The ability to use one table lookup oscillator for approxi-
mately 80 high-frequency harmonics represents a consider-
able reduction in computation compared with 80 separate
sinusoidal oscillators. The low-frequency 20 harmonics are
synthesized using separate time-domain table-lookup oscil-
lators. The details of the VQ process and corresponding syn-
thesis are described in detail in [36].

MIXING NOISE ELEMENTS
During analysis RPM separates noise elements from the original
recorded phrases. There are two types of noise elements: tran-
sient noises occurring during attacks and note transitions, and
sustain noises occurring during note sustains. These noise com-
ponents are stored as traditional PCM samples. During analysis,
RPM determines the level of the noises in the original record-
ings relative to the pitched or harmonic part of the sound.
During synthesis, noise elements are fetched from the database
and mixed with the newly synthesized harmonic components at
relative levels determined during analysis. Other than gain there
are no transformations applied to the noise elements. Additional
performance control over noise levels is provided to allow for
“scratchier” sounding strings, sharper attacks, etc. Sustain nois-
es are played with traditional sampler cross-fade looping applied
when time extension is required.

CONCLUSION
RPM achieves musical expressivity through a blend of func-
tional additive synthesis and phrase-oriented parametric con-
catenative synthesis. The realism and complexity of natural
sound is preserved by maintaining a database of rapidly vary-
ing components derived from original recordings. By includ-
ing complete phrases, the database emphasizes transitions
between notes and phrasing gestures that span several notes.

IEEE SIGNAL PROCESSING MAGAZINE [90] MARCH 2007

WE BELIEVE THAT THE SPACE OF
EXPRESSIVE ARTICULATIONS IS MUCH
TOO LARGE TO BE APPROACHED IN
A SYSTEMATIC MANNER AND THAT

ANY ATTEMPT TO REDUCE THE SPACE
TO AN ORGANIZED PERFORMANCE
MATRIX RESULTS IN A SIGNIFICANT
REDUCTION IN EXPRESSIVE POWER.

IEEE SIGNAL PROCESSING MAGAZINE [91] MARCH 2007

Slowly varying components are derived directly from the
MIDI control stream so that dynamic changes in timbre occur
in response to standard MIDI performance controls. By vary-
ing the frequency boundary between rapidly and slowly vary-
ing components, RPM remains expressive in live performance
and when rendering directly from a composer’s score. Many
Synful Orchestra RPM sound examples can be heard by visit-
ing www.synful.com. In future developments, RPM will lever-
age its flexible RPLHN sound representation and spectral
prediction methodology to explore the creation of new “fic-
tional” instruments though hybridization and mutation of
existing RPM instrument databases.

AUTHOR
Eric Lindemann (eric@synful.com), founder of Synful, has
a long background in music and technology. He led the design
of the IRCAM Signal Processing Workstation that was used in
computer music facilities around the world. He designed DSP
microprocessors for Cirrus Logic and participated in the
design of the first fully programmable DSP hearing aid for GN
Resound. He was a founding engineer of Waveframe, makers
of high-end digital audio workstations. He studied music
composition with Nadia Boulanger, Olivier Messiaen, and
Iannis Xenakis; has played keyboard for numerous movie
scores; and has toured with pop groups including the Fifth
Dimension and Osmond Brothers.

REFERENCES
[1] J. Chowning, “The synthesis of complex audio spectra by means of frequency
modulation,” J. Audio Eng. Soc., vol. 21, no. 7, 1973.

[2] J.O. Smith, “Music applications of digital waveguides,” Center for Computer
Research in Music and Acoustics (CCRMA), Stanford Univ., CCRMA Tech. Report
STAN-M-39, 1987.

[3] P. Schaeffer, Traite des Objets Musicaux, 1st ed. Paris, France: Editions du
Seuil, 1966.

[4] E. Lindemann, Synful Orchestra, www.synful.com, 2004–2006.

[5] H. Fletcher, Speech and Hearing in Communication, J, Allen, Ed., Acoustical
Society of America, 1995.

[6] B.C.J. Moore, An Introduction to the Psychology of Hearing. New York:
Academic, 1989.

[7] S. Hawking, God Created the Integers. Running Press, 2005. p. 496.

[8] A. Freed, “Inverse transform narrow band/broad band sound synthesis,” U.S.
Patent 5686683, 1997.

[9] A. Dembo and D. Malah, “Signal synthesis from modified discrete short-time
transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-36,
pp. 168–181, Feb. 1988.

[10] J. Laroche, “Synthesis of sinusoids via non-overlapping inverse Fourier trans-
form,” IEEE Trans. Speech and Audio Processing, vol. 8, pp. 471–477, July 2000.

[11] X. Rodet and P. Depalle, “Spectral envelopes and inverse FFT synthesis,” in
Proc. 93rd Conv. Audio Engineering Society, San Francisco, CA, Preprint 3393
(H-3), 1992.

[12] M. Goodwin and X. Rodet, “Efficient Fourier synthesis of nonstationary sinu-
soids,” presented at Int. Computer Music Conf., 1994.

[13] R.J. McAulay and T.F. Quatieri, “Computationally efficient sine-wave synthesis
and its application to sinusoidal transform coding,” presented at IEEE Int. Conf.
Acoustics, Speech, and Signal Processing, New York, NY, 1998.

[14] P. Kleczkowski, “Group additive synthesis,” Computer Music J., vol. 13, no. 1,
pp. c12–20, 1989.

[15] A. Horner, J. Beauchamp, and L. Haken, “Methods for multiple wavetable syn-
thesis of musical instrument tones,” J. Audio Eng. Soc., vol. 41, no. 5, May 1993.

[16] J.-C. Risset and M. Mathews, “Analysis of instrument tones,” Physics Today,
vol. 22, no. 2, pp. 23–40, 1969.

[17] J.B. Allen, “Short term spectral analysis, synthesis, and modification by dis-
crete Fourier transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-25, no. 3, pp. 235–238, 1977.

[18] P.P. Vaidyanathan, Multirate Systems and Filter Banks. New York: Prentice-
Hall 1993.

[19] F.J. Harris, “On the use of windows for harmonic analysis with the discrete
Fourier transform,” Proc. IEEE, vol. 66, pp. 51–83, 1978.

[20] J.O. Smith and X. Serra, “PARSHL: An analysis/synthesis program for non-
harmonic sounds based on a sinusoidal representation,” in Proc. Int. Computer
Music Conf., Tokyo, Japan, 1987.

[21] R.J. McAulay and T.F. Quatieri, “Speech analysis/synthesis based on a sinu-
soidal representation,” IEEE Transactions Acoust., Speech, Signal Processing, vol.
ASSP-34, pp. 744–754, Aug. 1986.

[22] T.F. Quatieri and R.J. McAulay, “Audio signal processing based on sinusoidal
analysis/synthesis,” in Applications of DSP to Audio & Acoustics, Boston: Kluwer,
pp. 343–416, 1998.

[23] X. Serra and J.O. Smith, “Spectral modeling synthesis: A sound analysis/syn-
thesis system based on a deterministic plus stochastic decomposition,” Computer
Music J., vol. 14, pp. 12–24, 1990.

[24] J. Laroche, Y. Stylianou, and E. Moulines, “HNS: Speech modification based
on a harmonic + noise model,” in Proc. IEEE Int. Conf. Acoustics, Speech, and
Signal Processing, Minneapolis, MN, 1993.

[25] G. Evangelista, “Pitch-synchronous wavelet representations of speech and
music signals,” IEEE Trans. Signal Processing, vol. 41, no. 12, Dec. 1993.

[26] T. Dutoit, An Introduction to Text-to-Speech Synthesis. Norwell, MA: Kluwer,
1997.

[27] A.J. Hunt, A.W. Black, “Unit selection in a concatenative speech synthesis sys-
tem using a large speech database,” in Proc. IEEE Int. Conf. Acoustics, Speech,
and Signal Processing, Atlanta, GA, pp. 373–376, May 1996.

[28] Y. Sagisaka, “Speech synthesis by rule using an optimal selection of non-uni-
form synthesis units,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal
Processing, New York, NY, pp. 679–682, 1988.

[29] R. Kobayashi, “Sound clustering synthesis using spectral data,” in Proc. Int.
Computer Music Conf., Singapore, 2003.

[30] G. Beller, Gregory, D. Schwarz, T. Hueber, and X. Rodet, “A hybrid concatena-
tive synthesis system on the intersection of music and speech,” in Journees
d’Informatique Musicale (JIM), St. Denis, France: MSH Paris Nord, 2005.

[31] J. Bonada and X. Serra, “Synthesis of the singing voice by performance sam-
pling and spectral models,” IEEE Signal Processing Mag., vol. 24, no. 2, 67–79,
Mar. 2007.

[32] D. Schwarz, “Corpus-based concatenative synthesis,” IEEE Signal Processing
Mag., vol. 24, no. 2, 92–104, Mar. 2007.

[33] D. Schwarz, “A system for data-driven concatenative sound synthesis,” in
Proc. COST-G6 Conf. Digital Audio Effects (DAFx), Verona, Italy, pp. 97–102,
Dec. 2, 2000.

[34] M. Puckette, “Low-dimensional parameter mapping using spectral envelopes,”
in Proc. Int. Computer Music Conf., Miami, Florida. Nov. 2004.

[35] J. Bonada, O. Celma, A. Loscos, J. Ortol, and X. Serra, “Singing voice synthesis
combining excitation plus resonance and sinusoidal plus residual models,” in Proc.
ICMC, Havana, Cuba, 2001.

[36] E. Lindemann, “Encoding and synthesis of tonal audio signals using domi-
nant sinusoids and a vector quantized residual tonal signal,” U.S. Patent 6298322,
May 6, 1999.

[37] E. Lindemann, “Music synthesizer capable of expressive phrasing,” U.S. Patent
6316710, Sept. 27, 1999.

[38] E. Lindemann, “Audio signal synthesis system based on probabilistic estima-
tion of time-varying spectra,” U.S. Patent 6111183, Sept. 7, 1999.

[39] S. Haykin, Neural Networks, A Comprehensive Foundation. New York:
Macmillan, 1994.

[40] V.N. Vapnik, The Nature of Statistical Learning Theory. New York: Springer,
2000.

[41] M. Clynes, “SuperConductor—The Global Music Interpretation and
Performance Program.” Available: www.superconductor.com.

[42] R. Bresin and A. Friberg, “Emotional coloring of computer-controlled music
performances,” Computer Music J., vol. 24, no. 4, pp. 44–63, 2000.

[43] A. Friberg, “pDM: An expressive sequencer with real-time control of the KTH
music performance rules,” Computer Music J., vol. 30, no. 1, pp. 37–48, 2006.

[44] M. Laurson, V. Norilo, and M. Kuuskankare, “PWGLSynth: A visual synthesis
language for virtual instrument design and control,” Computer Music J., vol. 29,
no. 3, pp. 29–41, 2005.

[45] N. Cristianini and J. Shawe-Taylor, Vector Support Machines. Cambridge,
U.K.: Cambridge Univ. Press, 2000.

[46] A. Gersho and R.M. Gray, Vector Quantization and Signal Compression.
Norwell, MA: Kluwer, 1992. [SP]

